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Synopsis 

Scaling parameters for two PVT equations of state are evaluated for 11 polymer melt systems 
using a nonlinear least square fitting algorithm that analyzes all of the experimental data 
simultaneously. Two different criteria are considered in this evaluation. In the first method, the 
fitting criterion is the difference between the calculated and experimental volume. In the second 
method, the criterion is the difference between the calculated and experimental pressure. In both 
cases, the differences between the scaling parameters obtained using the simultaneous fit proce- 
dure and thwe obtained using the earlier consecutive fit procedure are a few percent, which can 
have a significant effect in some calculations. In addition to being a more consistent method of 
evaluating scaling parameters, the simultaneous fit procedure leads to  much better agreement 
between calculated and experimental values, in some cases by a factor of 2. 

INTRODUCTION 

Equations of state are frequently represented in scaled form. In the theory 
of Simha and Somcynsky (SS),’ the pertinent parameters are the scaling 
pressure (P*) ,  the scaling volume (V), and scaling temperature (T*). They 
are measures of the intermolecular interactions and of the external degrees of 
freedom of the molecule. The accurate determination of these parameters by a 
superposition of the experimental PVT and the theoretical reduced PVT 
surfaces is important for several reasons. First, it provides an accurate mea- 
sure of the differences between prediction and measurement. One of the 
prerequisites, of course, is the validity of the theory’s basic assumptions, i.e., 
constancy of the scaling parameters over the range of temperatures and 
pressures investigated. This issue is important not only for the homogeneous 
melt, but, moreover, for the multiconstituent system under single and multi- 
phase conditions.’ Secondly, it  is of interest to explore possible correlations in 
terms of these scaling parameters, when systematically varying structures in 
polymer or, for that matter, in oligomer melts, such as hydrocarbons, are to be 
studied. This presupposes a consistent and accurate determination of the 
scaling parameters. 

A large number of polymer melts and several oligomers have been examined 
in the past by comparing experimental and theoretical (SS) PVT surfaces. The 
results have been satisfactory indeed. These comparisons, however, made use 
of certain approximations in the evaluation of the scaling parameters (see 
below), which can affect their accuracy. 
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Another scaled equation of state has recently been developed by one of us3 
and applied to polymer melts,4 polymer solids,' and n-alkane liquids.6 The 
scaling parameters are denoted by Po, V,, and To. The equation is semiempiri- 
cal in nature and has a simple analytical form. Agreement between calculated 
and experimental volumes is quite good for numerous crystalline and amor- 
phous polymers. In determining the best values to use for the scaling parame- 
ters, it was found4 that different methods used in their determination could 
lead to significant differences in the quality of the agreement with experiment. 

The purpose of this paper is twofold. First, we wish to reexamine experi- 
mental equation of state data, which were previously analyzed in relation to 
the two equations of state, that is, we redetermine the scaling parameters 
using a convenient mathematical algorithm. Secondly, we compare the predic- 
tions of SS and BH and examine correlations between the two sets of scaling 
parameters. 

In the next section we recapitulate the basic relationships involved and the 
previous procedures used in evaluating the scaling parameters. The following 
section outlines our computational algorithm employed for the determination 
of the parameters in the respective equations of state. In the fourth section, 
results are displayed for 11 polymer melts for which tabulated data are 
readily available. The fifth section presents comparisons between SS and BH 
equations. In the sixth section, we comment on a reported pressure depen- 
dence of the pressure scaling parameters at low pressures. The last section 
summarizes the conclusions reached on the basis of the computations. 

THE EQUATIONS OF STATE 

The SS equation is based on a lattice model, containing a fraction 1 - y of 
unoccupied sites or holes. In terms of reduced variables P, v, and p, it  has the 
form 

where Q = 2-'/6y( ~ v ) - ' / ~ .  The function y depends on volume and tempera- 
ture in a manner determined by the principle of minimum free energy. The 
resulting equation is 

(s/3c)[(s - l)/s + y- l  ln(1 - y)] = (y/6P)(yv)-'[2.409 - 3.033( y v ) - ' ]  

Here s is the number of segments per chain and 3c is the number of effective 
external degrees of freedom. 

The earlier procedure for testing the theory and thus obtaining the scaling 
parameters consists of two consecutive steps. In the first step, only the isobar 
at atmospheric pressure is involved. Since P* is of the order of several kilobar, 
p and hence the left-hand side of eq. (1) are practically zero. This permits the 
elimination of f in eq. (1) and thus in eq. (2). Finally, eq. (2) can be solved for 
y and ultimately the v-p function is obtained. Superposition of double 
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logarithmic plots yields v* and T*. Consideration of the elevated pressure 
isotherms produces a series of P* values, which are then averaged to generate 
a final value for the scaling pressure. This is the procedure applied by Quach 
and Simha' to their measurements on polystyrene and poly( o-methyl styrene). 
Subsequent authors8 have facilitated the first step by noting that a very good 
approximation to the theoretical isobar for P -, 0 is represented by the 
following interpolation expression: 

In Q = so + s,F33/2 (3) 

The numerical values of S, and S, vary only slightly with the temperature 
range. The results obtained by means of eq. (3) have been compared in detail 
with those derived by the evaluation of the coupled eqs. (1) and (2) for large 
and small s values?,1o A very satisfactory agreement with respect to the 
volumes ensues. As one might expect, the accuracy of the thermal expansivi- 
ties derived from eq. (3) is not as good as for the volumes. An exact evaluation 
of the expansivity over a range of P values has recently been carried out by 
Jain." An interpolation expression for his results at P = 0 adds a small 
correction term proportional to to eq. (3) with a modification of the 
numerical values of So and S,. We do not concern ourselves further with these 
refinements in the present context. The use of eq. (3) yields a considerable 
simplification in the determination of VY and T*, and provides, moreover, an 
immediate test of the theory when the experimental V-T measurements are 
plotted in the form suggested by eq. (3). A comparison of experimental and 
theoretical slopes and intercepts yields v* and T*. 

The procedure of consecutive evaluation of the scaling parameters, while 
computationally convenient, suffers from two deficiencies. First, it gives more 
emphasis to low than to the more numerous elevated pressure data points. 
Second, frequently all measurements are carried out in the pressure cell, 
rather than dealing separately with atmospheric pressure. This appears to 
reduce the accuracy of the latter data. For these reasons, a simultaneous fit of 
the three scaling parameters is indicated and procedures are described in the 
next section. 

The scaling parameters are related by the equation 

(P*VY/T*)Mo = ( c / s ) R  (4) 

with Mo the molecular mass of the chain segment. This segment is defined by 
eq. (4) for a given numerical assignment to the ratio c/s .  For large chains and 
a homogeneous system, s tends to infinity and 3c = s has been conventionally 
assumed. For finite chain lengths, as in oligomers or monomeric type molecules, 
we have the additional parameters s and c. The preassignment of a numerical 
value to s is one possibility, for example, s = 1 in the case of ethylene.12 One 
may then consider c as a fourth parameter to be determined. For short chains, 
3c = s + 3 is the assignment consistent with that for the infinite chain. In any 
case, then, the determination of all parameters requires the inclusion of eq. (4) 
as an auxiliary condition to be satisfied. We note the relation sMo = nMrep, 
where Mrep is the molecular mass of the repeat unit of the n-mer. For the 
infinite chain, Mo is directly determined. In other instances, it is eliminated 
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by means of this relation, and eq. (4) then becomes an auxiliary condition, to 
be satisfied by the five parameters V, T*, P*, s, and c. 

We turn next to the recently proposed BH equation of state: 

involving the scaling parameters Po, V,, and To. One procedure used4 for 
determining the scaling parameters was to follow the consecutive fit method 
used for the SS equation. Thus, the zero pressure data were fitted to eq. (5) by 
the method of least squares in order to find V, and To. Then Po was found by 
trial and error fitting to the elevated pressure data, using as a criterion the 
mean of the absolute value of the difference between experimental and 
calculated volume, ( IAVl). Note that, for these calculations, the difference 
between zero pressure and atmospheric pressure was found to be insignificant. 

Recognizing the desirability of treating all of the measurements in the same 
manner by simultaneously fitting all of the data to determine the scaling 
parameters, the above values were used as initial guesses and a trial and error 
search was made to find the scaling parameters that minimized ( I AVI ). This 
procedure was used by Hartmann and Haque for polymer melts4 and polymer 
 solid^.^ Using this method, ( IAVl) is reduced on the order of 508, compared 
to the consecutive fit method. While this procedure has the advantage of 
fitting the data simultaneously, the trial and error search is tedious. 

In order to facilitate the fitting procedure, an algorithm was developed that 
uses a nonlinear least squares method.6 This method not only is more 
convenient but also finds the minimum in a more reliable manner. One 
difference between this procedure and the trial and error method is that the 
criterion of fit is the sum of the squares of the differences between 
the experimental and calculated volumes rather than the absolute value of the 
difference. The resulting scaling parameters are almost unchanged. In this 
paper, we will use an improved version of the fitting algorithm for polymer 
melts with the two equations of state. 

SIMULTANEOUS FIT ALGORITHM 

Scaling parameters were determined in this work using a nonlinear least 
squares fitting procedure. Given a triple of initial guesses for the scaling 
Parameters in the SS equation (P*,  V, T*), for each experimental data point 
( P ,  V, 2') a residual is defined as follows. Taking P*, VY, T*, P, and T as 
fixed, numerical solution values y, and V, are obtained for eqs. (1) and (2), 
where the subscript n refers to the numerical solution. The residual is then 
defined to be V - V,. The triple of values P*, VY, T* for which the sum of the 
squares of the residuals for all of the experimental data points attains its 
minimum is considered to be the best set of reducing parameters for the 
experimental data. 

The least squares fit program used was ZXSSQ from the International 
Mathematical and Statistical Libraries, Inc. (IMSL) software library. The 
stopping criterion was attainment of at  least five significant digits of accuracy 
in P*, VY, T*. For each experimental data point, eqs. (1) and (2) were first 
solved for y, and V, using the IMSL nonlinear equation solver routine 
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ZSPOW with the stopping criterion being six significant digits of accuracy in 
y, and V,. The initial guess in ZSPOW for V, was taken to be the experimen- 
tal value V. For y,, the initial guess was the solution y of eq. (2), taking P*, 
v*, T*, P, T, and V as given. Equation (2) was solved numerically for this 
initial value of y to within lop4 using a standard bisection method. Note that 
ZSPOW is based on Newton's method, which in general doubles the number 
of significant digits in the solution with each iterative step within its region of 
convergence. Hence, by the time ZSPOW verifies six significant digits in y, 
and V,, much higher accuracy can be expected. 

The only input needed for the program in addition to the experimental data 
are initial guesses for P*, VY, T*. We have found that, for this problem, the 
simultaneous fit method does not require close initial guesses. Almost any 
reasonable set of values will suffice. The same final values are obtained for a 
wide variety of initial guesses that are far  from the final values. The program 
is written in FORTRAN5 and runs, on a main frame computer (CDC875), in a 
few seconds for the largest data set investigated here. 

The above analysis assumes that all of the experimental uncertainty is in 
the measurement of the volume, with pressure and temperature known ex- 
actly. A different approach was taken by Dee and Walsh.13 They assumed 
that all of the uncertainty is in the pressure, with volume and temperature 
known exactly. Our algorithm is easily modified to make this type of calcula- 
tion. In this case, the residuals are the differences between the experimental 
and numerically calculated pressures, P - P,. Since pressure appears only in 
eq. (l), the two SS eqs. are not coupled as they were when volume was the 
error corrupted variable. The numerical solution is then simpler when P 
carries all of the uncertainty. The values of the scaling parameters that 
minimize the sum of the squares of these residuals are found as before. Note, 
in this case, that if a standard bisection method is used to solve eq. (2) for y, 
[with eq. (1) then determining P,], y, should be determined to within around 
12 significant digits to prevent loss of accuracy in the scaling parameters 
obtained using ZXSSQ. 

In a like manner, one could assume that all of the uncertainty is in the 
temperature, with volume and pressure known exactly. However, since experi- 
mental errors in temperature measurements are generally smaller than errors 
in the other two variables, this type of calculation would not appear to be 
justified. Thus, while the mathematical formalism could be developed, we did 
not pursue this avenue. 

Having considered the possibilities for experimental error in any one of the 
state variables, it  is natural to combine the options and allow for error in all 
three of the variables. This type of extension of the usual method of least 
squares has been examined and is sometimes referred to as the error-in-vari- 
ables method. This approach has been applied by Nies et a1.12 to ethylene. 
These authors obtained the four parameters c, P*, T*, and VY with the 
preassigned value s = 1. For a complete description of the nonlinear least 
square fitting procedure used, see Refs. 14 and 15. We intend to give results 
for polymer melts obtained by means of this procedure in the future. In this 
paper, we compare their results for ethylene with ours. 

For the BH equation, a similar algorithm is followed to determine the 
scaling parameters: Po, V,, To. The calculation is simpler because there is only 
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one equation to solve rather than two coupled equations. Thus, the evaluation 
of the residuals is simpler than for the SS eq. The minimization procedure is 
the same. Only the results obtained assuming that all the error is in the 
volume will be presented. 

EVALUATION OF SCALING PARAMETERS 

The polymer melt experimental data selected for analysis were all available 
in tabulated form, rather than only graphically or as the parameters of an 
equation such as the Tait equation or an interpolation polynomial. The 
source for three polyethylenes and three acrylate polymers are measure- 
ments of Olabisi and Simha." The former are linear (LPE), branched (BPE), 
and high molecular weight linear polyethylene (HMWLPE). The acryl- 
ates are poly(methy1 methacrylate) (PMMA), poly(cyclohexy1 methacrylate) 
(PCHMA), and poly( n-butyl methacrylate) (PnBMA). For polystyrene (PS) 
and poly( o-methyl styrene) (PoMS), data were taken from Quach and Simha7 
and for poly(viny1 acetate) (PVAc) from McKinney and G01dstein.l~ For 
poly(dimethy1 siloxane) (PDMS), we have the observations of Kubota and 
Ogind' with room temperature as the reference state and those of Shih and 
Flory at room temperature.lg The combination of information from two 
sources was unavoidable in this instance, due to the lack of suitable tabulated 
data. Finally, there are the measurements on cis-1,4-polybutadiene (PBD) by 
Barlow.20 
P*, V, T* scaling parameters and mean absolute differences (IAVI) for the 

above 11 sets of experimental data determined assuming volume errors only, 
are listed in Table For comparison, consecutive fit results are given in 
parentheses. The scaling parameters change maximally by a few percent. The 
influence on ( IAVl) is more significant. Averaged over the 11 systems, the 
change is about 3056, being reduced from 7 to 5 X lop4 cm3/g. Some of the 
changes are considerably larger. Included in those with larger changes are 
polymers with a comparatively large temperature range available for observa- 
tion. In this connection it would be of interest to reevaluate the n-paraffin 
series, since a large temperature range is available. 

In addition to the average difference between calculated and experimental 
volume for each polymer, we have also examined the maximum difference. 
Typically, the maximum is three times the average, though in the worst case, 
PMMA, the maximum is eight times the average. Whereas this ratio gives 
some feel for the characteristics of the fit, the ratio is based on a single data 
point rather than the total ensemble of points. Another characteristic of the 
fit is the number of times V(experimenta1) - V(calcu1ated) changes sign along 
the isotherms. For most polymers, the sign changes every three or four data 
points, in data ensembles that vary from 41 (PMMA) to 168 (PnBMA) points, 
with no systematic pattern evident. 

In some cases, changes in scaling parameters of a few percent, as found 
above, can be significant. We attach particular significance to the changes seen 
in connection with the equation of state and the scaling parameters of a 
mixture, and the prediction of free energies AG and enthalpies AH of 
mixing.2*22 The theory allows for a prediction of the scaling pressure of the 
mixture (P*) ,  based on the complete equations of state of the constituents 
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TABLE I 
SS Scaling Parameters Using Simultaneous Fit with Error in Volume Only' 

P* v" T* (I*Vl> 
@a) (m3/g) (K) cm3/g) 

Polystyrene 

Poly( o-methyl styrene) 

Poly(methy1 methacrylate) 

Poly(cyclohexy1 methacrylate) 

Poly( n-butyl methacrylate) 

Polyethylene (branched) 

Polyethylene (linear) 

Polyethylene (high MW linear) 

Poly(viny1 acetate) 

Poly(dimethy1 siloxane) 

Cis-1,4-polybutadiene 

7155 
(7453) 
7499 
(7458) 
9291 
(9147) 
7994 
(8382) 
8234 
(8456) 
6979 
(6946) 
7788 

9041 

9467 

4774 

8256 
(7714) 

(7478) 

(89W 

(9380) 

(4739) 

0.9627 
(0.9598) 
0.9793 
(0.9762) 
0.8363 
(0.8370) 
0.8993 
(0.8906) 
0.9346 
(0.9299) 
1.1639 

1.1399 
(1.1417) 
1.1287 
(1.1285) 
0.8132 
(0.8141) 
0.9584 
(0.9593) 
1.0751 

(1.1600) 

(1.0861) 

12,791 

12,940 
(12,680) 

(12,740) 
11,900 
(1 1,920) 
11,740 

(1 1,290) 
10,200 
(9990) 
10,270 
(10,140) 
9750 
(9770) 
9210 
(9205) 
9380 
(9420) 
7850 
(7870) 
9170 

(9644) 

'Consecutive fit values in parentheses. 

and the equation of state of the mixture at a single, e.g., atmospheric pressure. 
Moreover, AG and AH are computed as small differences between large 
numbers and involve scaling factors P* and v* for constituents and mixtures. 
As has been shown,2122 slight variations in the P* and (P*) values which 
leave the equation of state and the volume changes of mixing practically 
intact, have a profound effect on the numerical values of AG and AH. 
Therefore, a consistent exploration of the performance of the theory in 
predicting these latter functions is predicated upon a consistent determination 
of all scaling parameters for constituents and mixture. 

Simultaneous fit Po, V,, To scaling parameters for the same sets of experi- 
mental data, assuming error in volume only, are listed in Table with 
consecutive fit values in parentheses. The scaling parameters likewise change 
by no more than a percent or two. In this case, the simultaneous fit accuracy 
is 6 x cm3/g for the consecutive fit. 
Thus, not only is the simultaneous fit a more consistent manner of analyzing 
the data, but it also leads to a significant improvement in accuracy. 

In comparing the simultaneous fit results for the two equations, eq. (1) is 
somewhat better than eq. (5), but both equations give quite good fits to 
measured values. In most cases, the experimental accuracy of the measure- 
ments is given as 10 X cm3/g, so that the predictions of both equations 
are within the accuracy of the measurements. Since the predictions of the two 
equations are so close, one can view the BH equation as an interpolation 

cm3/g compared with 9 x 
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TABLE I1 
BH Scaling Parameters Using Simultaneous Fit with Error in Volume Only" 

Polystyrene 29,600 0.8742 1591 5 
(28,900) (0.8683) (1540) (7) 

Poly( o-methyl styrene) 31,000 0.8878 1596 5 
(32,000) (0.8788) (1523) (6) 

Poly(methy1 methacrylate) 38,100 0.7581 1466 2 
(37,900) (0.7539) (1430) (5) 

Poly(cyclohexy1 methacry late) 30,900 0.8215 1490 9 
(32,900) (0.8038) (1366) (13) 

(32,900) (0.8390) (1208) (23) 
Polyethylene (branched) 25,400 1.0635 1293 11 

(27,600) (1.0456) (1221) (14) 
Polyethylene (linear) 28,200 1.0361 1203 5 

(28,700) (1.0294) (1179) (6) 

(32,700) (1.0189) (1112) (6) 
Poly(viny1 acetate) 38,200 0.7369 1151 1 

(38,800) (0.7349) (1139) (2) 
Poly(dimethy1 siloxane) 17,900 0.8749 989 3 

(17,900) (0.8650) (950) (13) 
Cis-1,4-polybutadiene 34,900 0.9788 1159 3 

(31,000) ( 1.0003) (1309) (4) 

Poly( n-butyl methacrylate) 31,300 0.8537 1291 16 

Polyethylene (high MW linear) 32,300 1.0241 1129 6 

"Consecutive fit values in parentheses. 

formula, valid at any pressure, for the SS equation, just as eq. (3) is a useful 
interpolation formula at zero pressure. 

Assuming that all of the experimental error is in the pressure measurement, 
scaling parameters were calculated for the same 11 data sets. P*,V*,T* 
values are given in Table I11 along with the mean of the absolute value of the 
difference between experimental and calculated pressure, ( IAPl). The scaling 
parameters are very close to those in Table I, differing by 1% or less. ( 1  Apt) is 

TABLE I11 
SS Scaling Parameters Using Simultaneous Fit with Error in Pressure Only 

Polystyrene 
Poly( 0-methyl styrene) 
Poly(methy1 methacrylate) 
Poly(cyclohexy1 methacrylate) 
Poly( n-butyl methacrylate) 
Polyethylene (branched) 
Polyethylene (linear) 
Polyethylene (high MW linear) 
Poly(viny1 acetate) 
Poly(dimethy1 siloxane) 
Cis-1,4-polybutadiene 

7152 
7461 
9263 
7773 
8257 
6923 
7864 
9179 
9476 
4800 
8348 

0.9638 
0.9814 
0.8369 
0.9039 
0.9359 
1.1674 
1.1406 
1.1285 
0.8114 
0.9575 
1.0728 

12,870 
13,080 
11,940 
11,990 
10,280 
10,390 
9790 
9221 
9283 
7825 
9067 

8 
9 
3 
15 
15 
12 
11 
13 
2 
2 
6 
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TABLE IV 
Simha-Somcynsky Scaling Parameters for Ethylene (High Density Region) 

Nies 
et ai. 

This 
work 

1.4647 
3274 
4583 

0.692 
1 
0.015 

1.4875 
3394 
4286 

0.634 
1 
0.010 

on the order of 10 bar, a reasonable average over all pressures. While an 
uncertainty of 10 bar is a small percent error when the experimental pressure 
is 2000 bar, it is very large at 1 bar. In fact, this method leads to the 
unphysical prediction of negative pressure when the experimental pressure is 1 
bar. This problem arises because only the residual P(experimenta1) - 
P(calcu1ated) is minimized, with no concern with the magnitude of P. This 
difficulty does not occur when volume is used since all the volumes are of the 
same order of magnitude. 

Finally, in comparing our error in volume only calculation with the error in 
all variables calculations of Nies et a1.I2 for ethylene, Douslin and Harrison's 
data23 from 10 to 15OoC, and in the pressure range up to about 350 bar were 
used, i.e., a total of 62 data points, as did Nies et al. As a measure of 
agreement between theory and experiment, we use ( IAVl ). Results are given 
in Table IV. The results are qualitatively not unexpected, that is we observe a 
variation of a few percent in the calculated parameters and a somewhat larger 
average value of ( I AVI ) when uncertainty is allowed in pressure and tempera- 
ture as well as volume. 

COMPARISON OF SCALING PARAMETERS 

Because of the close agreement of the predictions of the two equations of 
state, one would expect that the scaling parameters for the two equations 
should be related. For the volume and temperature scaling parameters, the 
relation follows directly from eq. (3) in comparison with eq. (5), whence 

v*/v, = exP(-so) (6) 

T*/T, = S;I3 (7) 

where S, and S, are considered to be constants. There is no equivalent 
relation for the scaling pressures, so that it will be assumed that they are 
directly proportional, as the other two parameters are. Plots of the scaling 
parameters for the two equations against each other for the 11 polymer melts 
should then have the same slope. The results are shown in Figures 1,2, and 3. 
As can be seen, the predicted correlation of the parameters is observed. 

An immediate consequence of Figures 1, 2, and 3 is that one can make 
rather reliable estimates of one set of scaling parameters from the other. All of 
the data in the literature for the two equations can then be interchanged 
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Fig. 1. Simultaneous fit scaling volumes, eqs. (1) and (5), for various polymers. For explanation 
of abbreviations, we the text. 
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Fig. 2. Simultaneous fit scaling temperatures, eqs. (1) and (5), for various polymers. For 
explanation of abbreviations, see the text. 
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Fig. 3. Simultaneous fit scaling pressures, eqs. (1) and (5), for various polymers. For explana- 
tion of abbreviations, see the text. 

without having to analyze experimental PVT data, unless highly accurate 
values are desired. 

From Figure 1, we find V / V 0  = 1.092, based on the experimental data for 
the 11 polymer systems. This value implies So = -0.0880, which is in reason- 
able agreement with the value of -0.1033 reported by U t r a ~ k i , ~ ~  based on a 
fit directly to the SS equation without consideration of experimental data. 
From Figure 2, we find T*/To = 8.069. This value implies S, = 22.92, in good 
agreement with the value of 23.83 based on the mathematical form of the 
equation alone. From Figure 3, we find P*/Po = 0.254. In this case, there is no 
prior mathematical comparison to be made. 

PRESSURE DEPENDENCE OF SCALING PRESSURE 

It has been pointed out by U t r a ~ k i ~ ~  that if one calculates a best value for 
P* at each pressure and temperature, the deviations of P* from the average 
value are not random but show more significant deviations at  low pressure. In 
some cases, there are large positive deviations at  low temperature and large 
negative deviations at high temperature. In other cases, this temperature 
dependence is reversed, with high temperature giving positive deviations. 
Similar behavior has been observed25 with Po. An example of these observa- 
tions is shown in Figure 4, for PnBMA, using the algorithm presented in this 
paper. Since this systematic behavior of the scaling pressure was unexplained, 
it seemed worthwhile to examine the basis for these results more closely. 

The pressure dependence can be rationalized in the following manner: Using 
the relation P = P/P*,  the reduced pressure derivative of reduced volume at  
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Fig. 4. Apparent pressure dependence of scaling pressure for PnBMA. For discussion of these 
results, see the text: (0) 355 K (0) 473 K. 

constant reduced temperature and unreduced pressure can be written as 

Approximating the derivative of Q with respect to P* with finite differences, 
we find 

Defining a reduced compressibility as 
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it  follows that 

AV , ,AP* 
V P* 
_ -  - kP- 

which is the desired result. From eq. (ll), we see that for a constant percent 
difference in V (viz., AV/V), it  is the product of P and the difference in P* 
that is constant (neglecting changes in k). nus, at low pressure, large 
changes in P* have the same effect on V as small changes do at high pressure. 
Since our method focuses on volume difference, the minimization procedure 
tends to find fits for which the volume deviations are about the same 
everywhere. Therefore, we see larger changes in P* a t  low pressure than at 
high pressure because these changes represent the same volume differences. 

Assuming that differences between theory and experiment are random, we 
can now understand why for some polymers at low pressure there are large 
negative deviations from the average at low temperature and large positive 
deviations at high temperature, as shown in Figure 4, whereas for other 
polymers the reverse is true. This is just a result of chance whether the 
experimental value is greater or lesser than the theoretical. 

For any given isotherm, one would expect for a least squares fit of data that 
the differences between the fitted theoretical line and the experimental data 
would alternate, roughly, between above and below the line, leading to 
oscillations in the difference (positive to negative). This is the behavior 
observed in Figure 4. 

The observations in Figure 4 are thus understandable in terms of the 
characteristics of the equation of state (they both behave in the same 
manner), namely that volume becomes insensitive to the scaling pressure at  
low pressure and that at all pressures the differences between theory and 
experiment are approximately random. Note that at  zero pressure, the scaling 
pressure is undetermined and that the insensitivity of P* extends up to about 
200 bar. 

CONCLUSIONS 

Scaling parameters for 11 polymer melts have been determined using two 
different types of simultaneous fit of all the experimental data for two scaled 
PVT equations of state. The polymer melts chosen cover a wide range of 
molecular properties and were taken from a variety of sources for which 
published tabulated data were available. Based on the analysis presented 
here, a number of conclusions have been reached: 

1. Using the more consistent procedure of fitting all the data simultaneously 
rather than consecutively, the scaling parameters change maximally by a few 
percent. These changes can be significant in some applications such as energy 
of mixing calculations. 

2. A significant improvement in the agreement between predicted and 
experimental volumes is obtained by using the simultaneous rather than a 
consecutive fit. The improvement varies from polymer to polymer and from 
one equation to the other but is often a factor of 2. The improvement seems to 
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be more pronounced in those systems for which experimental data are avail- 
able over the widest temperature range. 

3. The two equations of state both make predictions of volume that are 
within the experimental accuracy of the measurements. 

4. The scaling parameters for the two equations of state are not indepen- 
dent but are linearly related with a high degree of correlation. Thus, if values 
are known for one equation, reliable estimates for the other can be made. 

5. The two equations of state are very similar to one another, and the 
predictions of one can be substituted for the other with little effect on the 
predicted volume. Thus, the BH equation is a useful interpolation formula for 
the SS equation. 

6. PVT equations of state are insensitive to the pressure scaling parameter 
a t  low pressure. 

7. The most consistent assumption for error in only one variable is to use 
volume as the criterion of fit, though in principle it would be desirable to 
allow all three variables to have experimental uncertainty. 

The authors would like to thank Mr. L. T. Hillegers, DSM B. V. (The Netherlands), for 
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